

PHOTOCHEMICAL CYCLOADDITION REACTIONS. III¹. A FACILE SYNTHESIS OF DIMETHYL 2,3-PLEIADIENEDICARBOXYLATE Joan E. Shields*, Dragan Gavrilovic* and Jan Kopecký** *Department of Chemistry, C. W. Post College of Long Island University, Brookville, New York **Institute of Industrial Hygiene and Occupational Diseases, Prague, Czechoslovakia (Received in USA 15 December 1970; received in UK for publication 21 December 1970)

Pleiadiene and related nonalternant hydrocarbons have long been a subject of theoretical interest². The synthesis of the parent compound, pleiadiene (I), has been reported³,⁴. However, extremely low yields from lengthy synthetic schemes have precluded an investigation of the physical and chemical properties of this substance. We now report the facile preparation of dimethyl cyclohepta[de]naphthalene-8,9-dicarboxylate (II), thereby providing an entry into this interesting 14 I electron pleiadiene ring system.

I, R = H II, R = CO_2CH_3

Aside from the well-known photodimerization⁵, photochemical cycloadditions to acenaphthylene have been reported only with duroquinone⁶, chloranil⁷, and acrylonitrile⁸. Taking advantage of the heavy-atom effect observed in the photodimerization of acenaphthylene⁹ and in its cycloaddition to acrylonitrile⁸, we have found that brief irradiation¹⁰ of an ethyl bromide solution, containing equimolar amounts of bromomaleic anhydride and acenaphthylene, led to deposition of III¹¹, $C_{16}H_9BrO_3$, as colorless crystals (45%), mp 240-242°, (from acetonehexane). It should be noted that no cycloadduct was observed from irradiation of these addends in the absence of a heavy-atom solvent. Photolysis in acetone, benzene, cyclohexane, ether or hexane afforded only acenaphthylene dimer. Hydrolysis of anhydride III in a refluxing solution of acetone-water (2:1) gave the anticipated diacid IV, $C_{16}H_{11}BrO_4$, mp 248-249° (from acetone) in quantitative yield. Treatment of IV with diazomethane afforded 100% yield of

IV, $R = CO_2H$ V, $R = CO_2CH_3$

No.3

VI, $R = CO_2 CH_3$

diester V, $C_{18}H_{15}BrO_4$, as colorless needles, mp 108-109° (from diethyl ether). Dehydrobromination of V with triethylamine in refluxing tetrahydrofuran gave 75% yield of colorless crystalline cyclobutene diester VI, $C_{18}H_{14}O_4$, mp 131.5-133° (from diethyl ether). The nmr spectrum (CDCl₃) of VI shows the presence of two carbomethoxy groups (δ 3.81, singlet), two bridgehead protons (δ 4.84, singlet) and six aromatic protons (δ 7.38-7.80, multiplet).

Conversion of VI to the desired dimethyl 2,3-pleiadienedicarboxylate (II) was accomplished by heating a solution of VI in diphenylmethane under reflux (265°) for ten minutes. This valence isomerization was accompanied by the appearance of a brick-red solution. Chromatography of this solution on a silica gel column resulted in the separation of diphenylmethane (elution with hexane) and pleiadiene diester II (elution with 5% diethyl ether-hexane). The latter fraction, after recrystallization from diethyl ether-hexane, gave 80% yield of II, $C_{18}H_{14}O_{4}$, as orange-red needles¹², mp 107-108°. Proof of structure of II was based on elemental analysis, molecular weight and the following spectral evidence. The nmr spectrum (CDCl₃) exhibits a singlet of six methyl protons at $\delta 3.78$ and a multiplet of eight protons centered at $\delta 7.21$. The ultraviolet-visible spectrum is strikingly similar to that reported³ for pleiadiene (I).

Further investigations, especially those directed toward the photochemical synthesis of pleiadiene and other derivatives, are now in progress.

<u>Acknowledgement.</u> Financial support from the Research Corporation is gratefully acknowledged.

REFERENCES

1.	For paper II see J. Kopecky and J. E. Shields, Coll. Czech. Chem. Comm.,
	in press.
2.	B. Pullman, A. Pullman, G. Berthier and J. Pontis, <u>J. Chim. phys.</u> ,
	49, 20 (1952); J. Koutecky, P. Hochmann and J. Michl, J. Chem. Phys.,
	40, 2439 (1964); B. J. Nicholson, <u>J. Amer. Chem. Soc., 88</u> , 5156 (1966).
3.	V. Boekelheide and G. K. Vick, <u>J. Amer. Chem. Soc., 78</u> , 653 (1956).
4.	P. D. Gardner and R. J. Thompson, <u>J. Org. Chem., 22</u> , 36 (1957).
5.	I. Hartmann, W. Hartmann and G. O. Schenck, <u>Ber., 100</u> , 3146 (1967).
6.	G. O. Schenck, I. Hartmann and W. Metzner, Tetrahedron Letters, 347
	(1965).
7.	G. Pfundt, Diplomarbeit, University of Göttingen, 1958.
8.	B. F. Plummer and R. A. Hall, Chem. Comm., 44 (1970).
9.	D. O. Cowan and R. L. Drisko, <u>J. Amer. Chem. Soc., 89</u> , 3068 (1967).
10.	Irradiations were carried out in a Solidex reactor equipped with a
	Hanovia 100 w mercury-quartz high-pressure lamp cooled by a water jacket.
11.	The structure assigned each new compound (II - VI) has been confirmed by
	spectral data (ir, uv and nmr), elemental analysis and molecular weight
	determination.
12.	Pleiadiene (I) was reported as a red crystalline solid, (ref. 3).

Ň